Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones ${ }^{\text {a }}$ and Piotr Kuśs ${ }^{\text {b }}$

${ }^{a}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Department of Chemistry, Silesian University, 9 Szkolna Street, 40-006 Katowice, Poland

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=133 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.025$
$w R$ factor $=0.057$
Data-to-parameter ratio $=23.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2"-Bis(bromomethyl)-p-terphenyl

The molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{2}$, displays crystallographic inversion symmetry. Two $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions link the molecules into layers parallel to ($\overline{1} 11$). The shortest $\mathrm{Br} \cdots \mathrm{Br}$ contact is 4.1599 (4) \AA.

Comment

In order to explore the relationship between brominebromine interactions and the structure of poly(bromomethyl)aryl derivatives, we have synthesized a series of bromomethylarenes. Previously, we described the structure of 1,6,7tris(bromomethyl)naphthalene (Kuś \& Jones, 2003). The crystal packing of this compound shows two types of interaction: weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ interactions. We describe here the crystal structure of $2,2^{\prime \prime}$ -bis(bromomethyl)-para-terphenyl, (I), which was obtained by bromination of $2,2^{\prime \prime}$-dimethyl- p-terphenyl using N-bromosuccinimide in boiling tetrachloromethane.

(I)

The molecule, which displays crystallographic inversion symmetry, is shown in Fig. 1. Bond lengths and angles may be considered normal, e.g. the single-bond length between the rings is 1.492 (2) $\AA, c f .1 .490$ (2) \AA in $2,5,2^{\prime \prime}, 5^{\prime \prime}$-tetramethyl- p terphenyl (Jones et al., 2005). The angle between the central and the outer planes is $54.13(6)^{\circ}$.

The molecules are linked to form layers parallel to ($\overline{1} 11$) by the long and presumably very weak interactions $\mathrm{H} 6 \cdots \mathrm{Br}$ and $\mathrm{H} 7 \cdots \mathrm{Br}$ (Fig. 2 and Table 1). The shortest $\mathrm{Br} \cdots \mathrm{Br}$ contact is 4.1599 (4) A via the symmetry operator ($-x, 1-y,-z$), which is considerably longer than the double van der Waals radius and is therefore not drawn explicitly in Fig. 2. The layers are in

Received 9 August 2005 Accepted 10 August 2005 Online 17 August 2005

Secondary interactions in bromomethyl derivatives, Part 2. Part 1: Kuś \& Jones (2003)
turn linked by the short $\mathrm{C}-\mathrm{H} \cdots \pi$ contact $\mathrm{C} 10-$ $\mathrm{H} 10 A \cdots C g(\mathrm{C} 4-\mathrm{C} 9)$, with $\mathrm{C}-\mathrm{H}$ normalized to $1.08 \AA$, $\mathrm{H} \cdots C g=2.71 \AA$ and $\mathrm{C}-\mathrm{H} \cdots C g=121^{\circ}[C g$ is at $(x-1, y, z)]$. The contact is very asymmetric; the H atom is much closer to atoms $\mathrm{C} 4-\mathrm{C} 7$ than to the other two atoms.

Experimental

Compound (I) was synthesized from $2,2^{\prime \prime}$-dimethyl-p-terphenyl according to the method of Boeckmann \& Vögtle (1981). The analytical and spectroscopic data are consistent with the literature. Single crystals were grown by slow evaporation of a chloroform solution. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.56-7.59(m, 2 \mathrm{H}), 7.55(s$, $4 \mathrm{H}), 7.38-7.41(m, 4 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz): 32.42, 128.27, 128.77, 129.11, 130.64, 131.23, 135.39, 139.53, 141.75.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{2}$
$M_{r}=416.15$
Triclinic, $P \overline{1}$
$a=4.4286(4) \AA$
$b=7.4756(6) \AA$
$c=12.4664(12) \AA$
$\alpha=96.032(4)^{\circ}$
$\beta=98.347(4)^{\circ}$
$\gamma=96.155(4)^{\circ}$
$V=402.93(6) \AA^{\circ}$

$$
Z=1
$$

$D_{x}=1.715 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4465 reflections
$\theta=2.7-30.4^{\circ}$
$\mu=5.02 \mathrm{~mm}^{-1}$
$T=133$ (2) K
Rectangular prism, colourless
$0.25 \times 0.10 \times 0.07 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer
ω and φ scans
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\text {min }}=0.488, T_{\text {max }}=0.704$
8315 measured reflections

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.057$
$S=1.02$
2348 reflections
100 parameters

Figure 1
The molecule of the title compound in the crystal structure. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing of the title compound, viewed perpendicular to (111). Dotted lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ contacts (see Comment).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

The authors thank Mr A. Weinkauf for technical assistance.

References

Boeckmann, K. \& Vögtle, F. (1981). Liebigs Ann. Chem. pp. 467-475.
Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Jones, P. G., Kuś, P. \& Pasewicz, A. (2005). Acta Cryst. E61, o1895-o1896. Kuś, P. \& Jones, P. G. (2003). Acta Cryst. E59, o899-o900.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

